2.7 Newton’s Third Law

Critical Questions:

  • If two astronauts are floating in space and one of them shoves the other, how come they both float away in opposite directions?
  • What makes a car move forwards?

Walking is such a simple task that most mammals can do it mere hours after being born. (It takes humans a few years to figure it out, but we get there eventually.)

baby elephant
Yeeeaaah I’m walkin’

It’s so simple that the average person, unless they are a very special type of person, does not think very hard about the physics of walking.

But think about it: how does it really work? One leg moves forward, the other moves back, and somehow your entire body gets propelled in the direction you want to travel. It’s a great mystery!

Or perhaps you’re rolling your eyes right now. “Come on,” you’re saying, “don’t be an imbecile! Each time you move a leg backwards, you push yourself forwards at the same time. Easy!”

Read more

Cartoon: PhD Comics Explains the Higgs Boson

I urge you to watch this video. I also urge you to skip ahead to the animation, because that’s where it gets good. Learning about the Higgs Boson was one of the main events that got me interested in physics in the first place. And by the way, there are actually more than the twelve … Read more

2.6 Newton’s Second Law, Part 2: Multiple Forces

Critical Questions:

  • What happens when more than one forces pushes or pulls an object?
  • Why do some objects move at a constant speed even though they’re being pushed by a force?

You might have noticed that in the last section, I was careful to talk about only one force at a time. If a real physicist had been reading, steam would be coming out of her ears, because Newton’s Second Law is usually stated in terms of something called the net force. “Net” in physics means about the same thing as it does in economics: it is the total result once everything has been added and subtracted.

So what happens when there is more than one force? I like to think of net force as if two people were pulling on ropes attached to a big crate. If they pull the crate in the same direction, the crate will accelerate twice as quickly. If they pull in opposite directions with equal forces, the crate won’t move at all — these two forces cancel each other out. If one person pulls northwards and the other pulls eastwards, the crate will move to the north-east.

dog tug of war
If dogs are involved, all rules are out the window.

The net force, then, is just the sum of all of the forces going in various directions. It’s important to remember that in the formula for Newton’s Second Law, the F is not just any one force but the sum of all of the forces acting on the object. If two equal forces pull in opposite directions, the net force is zero, which means the acceleration is zero.

Read more

2.5 Newton’s Second Law, Part 1: Effects of One Force

Critical Questions:

  • How does something move when it’s being pushed?
  • What would it take to move the Death Star?

Newton’s First Law is all about what happens when there are no forces acting on an object. It sets everything up for us to be able to really understand everything else. But the second law is the one that gets the most press, because it tells us what forces actually do, and it even gives us a mathematical formula to let us calculate the results of various forces.

Now, I know I promised not to bring math into this blog, but this is going to be one of the exceptions, because (a) it’s arguably the most important equation in the field of physics, and (b) it’s super easy to understand.

We already know that forces move things around. As Newton’s First Law tells us, things don’t just spontaneously start moving on their own; there has to be a force that causes them to change their motion.

Picture yourself in the driver’s seat of a car. You push down on the gas pedal, and the car starts to move forwards. You push harder and pick up speed. At some point, you might ease off the gas pedal a bit and keep the car moving at a constant speed down a straight stretch of road. And when you want to slow down, you might lift your foot off the pedal for a while before using the brakes.

batmobile
Unless you own the batmobile and you NEVER BRAKE FOR ANYBODY

This is actually a complicated series of events. But Newton’s Second Law is powerful enough to explain all of it — not the inner workings of your car, necessarily, but the relationships between the amount you step on the gas and the car’s changing speeds.

Read more

2.4 Newton’s First Law, Part 2: Inertia

Critical Questions:

  • How do things move when they’re floating through space?
  • What is inertia?
  • Why can’t you move your sailboat by pointing a fan at the sail?

Let’s head off into Imaginary Physics Problem Land (see the previous post) in order to understand the basics of Newton’s laws before we go deeper down the rabbit hole.

When discussing Newton’s First Law, the specific IPPL we’ll use is one in which we ignore not only friction, but also all other forces that might interfere. So imagine yourself floating in space, in a spacesuit, with that solid object that you had at the beginning of the previous section.

olive bread in space
Spacebread.

Read more

Live Event: Quantum Physics Lecture and Jam Tasting!

Montrealers: Come learn about the insanity that goes on in the subatomic world. Quantum Physics: Everything You Thought You Knew About Reality Is Horribly, Horribly Wrong Plus Jam Tasting Tuesday, May 1st, 2012 at 7 pm Free Admission 29 Beaubien Est, Montreal (Preservation Society workspace — map) Presented in conjunction with Preservation Society, this event … Read more

2.3 Newton’s First Law, Part 1: Imaginary Physics Problem Land

Critical Questions:

  • Why do we tend to get Newton’s Laws wrong in our heads?
  • Why do physics problems always involve “frictionless slopes” and “massless ropes”?

Imagine an object. Think of something with a bit of weight to it, like a small wooden treasure chest or a fresh loaf of good, dense olive bread. Or, once again, you can go ahead and try this simple experiment in real life.

Pain_ciabatta_aux_olives_noires
Afterwards, eat the bread.
Now imagine that you start to push this object. You keep pushing until it’s got a good speed going, and then you let go. What happens next?

You have watched this exact scenario play out an uncounted number of times in your life, and so you probably have a pretty good idea of the results. The object will move forward for a little while, and then eventually it will slow down and stop.

After observing this behaviour over and over again, most people develop an unconscious version of Newton’s First Law in their own heads. Their version goes something like this: Everything, no matter how fast it’s going, will eventually slow down and stop. And, surprise surprise, this is wrong.

Read more

Stuff a-Brewin’

In case you haven’t noticed, I’ve been posting chapter updates twice a week since the site began. But this week I’m tutoring like a maniac as final exams approach. So if you’re sitting there waiting desperately to find out the connection between forces and Isaac Newton, you’re just going to have to be patient. The … Read more

2.2 Forces

Critical Questions:

  • What makes things move?
  • What’s happening to the molecules in my hand when I reach out and touch something solid, like a door?

As a teacher, I’ve always found it easy to define the term force. Ready? It is a push or a pull. Identifying forces in real life, though, can a bit more tricky.

Of course there are the obvious ones. Push open a door, and you’ve applied a force to it. Throw a ball, ditto. Pull yourself up a rope, lift a fork laden with pasta to your mouth, or punch someone in the kidney: all forces.

Hadouken - Street Fighter
The Hadouken special attack: definitely a force.

But forces can, of course, get a lot more complicated. For example: if you push down on the gas pedal, that’s an obvious force, but what force pushes the car forward? Of course there’s an engine and the engine spins the wheels, but what is actually pushing the car? Not the wheels, exactly — we’ll have to get back to that one.

Read more

TEDx Talk: How to Save the Earth from Asteroids

Here’s a TEDx Talk by astronomer Phil Plait (who also blogs for Discover Magazine at Bad Astronomy) about some of the asteroids that have already collided with Earth and what we can do if another big one heads our way. He briefly mentions the fact that blowing the thing up with a nuclear bomb (as … Read more